
PRODUCT AND PROCESS DESIGN PRINCIPLES

Synthesis, Analysis and Evaluation

FOURTH EDITION

WARREN D. SEIDER • DANIEL R. LEWIN J.D. SEADER • SOEMANTRI WIDAGDO RAFIQUL GANI • KA MING NG

WILEY

PRODUCT AND PROCESS DESIGN PRINCIPLES

PRODUCT AND PROCESS DESIGN PRINCIPLES Synthesis, Analysis, and Evaluation

Fourth Edition

Warren D. Seider

Department of Chemical and Biomolecular Engineering University of Pennsylvania, Philadelphia, PA 19104-6393

Daniel R. Lewin

Department of Chemical Engineering Technion—Israel Institute of Technology, Haifa 32000, ISRAEL

J. D. Seader

Department of Chemical and Fuels Engineering University of Utah, Salt Lake City, Utah 84112-9203

Soemantri Widagdo

InnoSEA International New York, USA

Rafiqul Gani

Department of Chemical and Biochemical Engineering Technical University of Denmark, DK-2800 Lyngby, Denmark

Ka Ming Ng

Department of Chemical and Biomolecular Engineering The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong

WILEY

VICE PRESIDENT & DIRECTOR	Laurie Rosatone
SENIOR DIRECTOR	Don Fowley
EXECUTIVE EDITOR	Linda Ratts
SPONSORING EDITOR	Mary O'Sullivan
MARKET SOLUTIONS ASSISTANT	Courtney Jordan
PROJECT MANAGER	Gladys Soto
PROJECT SPECIALIST	Nichole Urban
SENIOR MARKETING MANAGER	Daniel Sayre
ASSISTANT MARKETING MANAGER	Puja Katariwala
ASSOCIATE DIRECTOR	Kevin Holm
SENIOR CONTENT SPECIALIST	Nicole Repasky
PRODUCTION EDITOR	Sangeetha Rajan

This book was set in 10/12 Times LT Std by SPi Global and printed and bound by Lightning Source Inc.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2017, 2009, 2004, 1999 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923 (Web site: www.copyright.com). Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, or online at: www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at: www.wiley.com/go/returnlabel. If you have chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy. Outside of the United States, please contact your local sales representative.

ISBN: 978-1-119-28263-1 (PBK) ISBN: 978-1-119-25734-9 (EVAL)

Library of Congress Cataloging in Publication Data:

Names: Seider, Warren D., author. | Lewin, Daniel R., author. | Seader, J. D., author. | Widagdo, Soemantri (Chemical engineer), author. | Gani, R. (Rafiqul), author. | Ng, Ka Ming, author.

Title: Product and process design principles : synthesis, analysis and evaluation / by Warren D. Seider, Daniel R. Lewin, J. D. Seader, Soemantri Widagdo, Rafiqul Gani, Ka Ming Ng.

Description: Fourth edition. | New York : John Wiley & Sons Inc., 2017. | Includes bibliographical references and index.

Identifiers: LCCN 2015046825 (print) | LCCN 2015047441 (ebook) | ISBN 9781119282631 (pbk.) |

ISBN 9781119257332 (ePub) | ISBN 9781119261292 (Adobe PDF)

Subjects: LCSH: Chemical processes. | Synthetic products.

Classification: LCC TP155.7 .S423 2017 (print) | LCC TP155.7 (ebook) | DDC

660/.28-dc23

LC record available at http://lccn.loc.gov/2015046825

Printing identification and country of origin will either be included on this page and/or the end of the book. In addition, if the ISBN on this page and the back cover do not match, the ISBN on the back cover should be considered the correct ISBN.

Printed in the United States of America 10 9 8 7 6 5 4 3 2 1

Dedication

To the memory of my parents, to Diane, and to Deborah, Gabriel, Joe, Yishai, and Idana; Benjamin, Jaime, Ezra, and Raz

To the memory of my father, Harry Lewin, to my mother, Rebeca Lewin, to Ruti, and to Noa and Yonatan

To the memory of my parents, to Sylvia, and to my children

To the memory of my father, Theodorus Widagdo, to my mother, and to Richard

To the memory of L. E. (Skip) Scriven, H. Ted Davis, and Alkis Payatakes

To the memory of Richard R. Hughes, a pioneer in computer-aided simulation and optimization with whom two of the authors developed many concepts for carrying out and teaching process design

To all of our students: past, present, and future...

Warren D. Seider is Professor of Chemical and Biomolecular Engineering at the University of Pennsylvania. He received a B.S. degree from the Polytechnic Institute of Brooklyn and M.S. and Ph.D. degrees from the University of Michigan. He has contributed to the fields of process analysis, simulation, design, and control. Seider coauthored FLOWTRAN Simulation—An Introduction in 1974 and has coordinated the design course involving projects provided by many practicing engineers in the Philadelphia area at Penn for over 35 years. He has authored or coauthored 120 journal articles and authored or edited seven books. Seider was the recipient of the American Institute of Chemical Engineers (AIChE) Computing in Chemical Engineering Award in 1992, corecipient of the AIChE Warren K. Lewis Award in 2004 with J. D. Seader, and recipient of the AIChE F. J. and Dorothy Van Antwerpen Award in 2011. Seider served as Director of AIChE from 1984 to 1986 and as Chairman of the CAST Division and the Publication Committee. He helped to organize the Computer Aids for Chemical Engineering Education (CACHE) Committee in 1969 and served as its chairman. Seider is a member of the Editorial Advisory Board of Computers and Chemical Engineering. In 2008, his textbook, Introduction to Chemical Engineering and Computer Calculations with coauthor Alan L. Myers, was cited as one of 30 ground-breaking books in the last 100 years of chemical engineering.

Daniel R. Lewin is Churchill Family Chair Professor of Chemical Engineering and Director of the Process Systems Engineering (PSE) research group at the Technion, the Israel Institute of Technology. He received his B.Sc. from the University of Edinburgh and his D.Sc. from the Technion. Lewin's research focuses on the interaction of process design and process control and operations with emphasis on model-based methods. He has authored or coauthored over 100 technical publications in the area of process systems engineering as well as the first three editions of this textbook and the multimedia CD that accompanies it. Lewin has been awarded a number of prizes for research excellence and twice received the Jacknow Award, the Alfred and Yehuda Weissman Award, and the Yannai Prize, in recognition of teaching excellence at the Technion.

J. D. Seader is Professor Emeritus of Chemical Engineering at the University of Utah. He received B.S. and M.S. degrees from the University of California at Berkeley and a Ph.D. from the University of Wisconsin. From 1952 to 1959, he designed chemical and petroleum processes for Chevron Research, directed the development of one of the first computer-aided process design programs, and codeveloped the first widely used computerized vapor-liquid equilibrium correlation. From 1959 to 1965, he conducted rocket engine research for Rocketdyne on all of the engines that took man to the moon. Before joining the faculty at the University of Utah in 1966, Seader was a professor at the University of Idaho. He is the author or coauthor of 114 technical articles, eight books, and four patents. Seader is coauthor of the section on distillation in the sixth and seventh editions of Perry's Chemical Engineers' Handbook. He is coauthor of Separation Process Principles published in 1998 with second, third, and fourth editions in 2006, 2011, 2016, respectively. Seader was Associate Editor of Industrial and Engineering Chemistry Research for 12 years, starting in 1987. He was a founding member and trustee of CACHE for 33 years, serving as Executive Officer from 1980 to 1984. For 20 years, he directed the use by and distribution to 190 chemical engineering departments worldwide of Monsanto's FLOWTRAN process simulation computer program. Seader served as Chairman of the Chemical Engineering Department at the University of Utah from 1975 to 1978 and as Director of AIChE from 1983 to 1985. In 1983, he presented the 35th Annual Institute Lecture of AIChE. In 1988, he received the Computing in Chemical Engineering Award of the CAST Division of AIChE. In 2004, he received

the CACHE Award for Excellence in Computing in Chemical Engineering Education from the ASEE. In 2004, he received with Professor Warren D. Seider the Warren K. Lewis Award for Chemical Engineering Education from the AIChE. In 2008, his textbook, *Separation Process Principles* with coauthor Ernest J. Henley, was cited as one of 30 ground-breaking books in the last 100 years of chemical engineering.

Soemantri Widagdo is the founder of InnoSEA International in 2013 and formerly an R&D executive after a 15-year career at 3M Company. His last position was as the R&D Head of 3M Southeast Asia. He received his B.S. degree in chemical engineering from Bandung Institute of Technology, Indonesia, and his M.Ch.E. and Ph.D. degrees from Stevens Institute of Technology. Early in his career, Widagdo developed the first electric generator in Indonesia that used biomass gasification technology. After the completion of his graduate studies, he began his career in the United States with the Polymer Processing Institute (PPI), Hoboken, New Jersey. As the head of its computation group, he led the development of an analysis software package for twin-screw compounding. During his tenure at PPI, Widagdo was also Research Professor of Chemical Engineering at Stevens Institute of Technology. He has been involved in a variety of technology and product-development programs involving renewable energy, industrial and transportation applications, consumer office products, electrical and electronics applications, healthcare and dentistry, and display and graphics applications. He has authored and coauthored over 20 technical publications and four patents.

Rafiqul Gani is Professor of System Design at the Department of Chemical & Biochemical Engineering, The Technical University of Denmark. He is also the cofounder and former Head of the Computer Aided Product-Process Engineering Center (CAPEC). He received a B.S degree from the Bangladesh University of Engineering and Technology, and M.S., DIC, and Ph.D. degrees from Imperial College, London. Gani's current research interests include development of computer-aided methods and tools for modeling, property estimation, process-product synthesis and design, and process-tools integration. He has published more than 300 peer-reviewed journal articles and delivered over 300 lectures, seminars, and plenary/keynote lectures at international conferences, institutions, and companies all over the world. Gani was Editor-in-chief of the Computers & Chemical Engineering journal (until 31 December 2015), is Editor of the Elsevier CACE book series, and serves on the editorial advisory board of several other journals. He received the 2015 Computers and Chemical Engineering Award from the AIChE CAST Division. For the term 2016–2017, he has been relected as the President of the European Federation of Chemical Engineering (EFCE); he is a member of the Board of Trustees of the American Institute of Chemical Engineers (AIChE); a Fellow of the AIChE; and a Fellow of Institution of Chemical Engineers (IChemE).

Ka Ming Ng is Chair Professor of Chemical and Biomolecular Engineering at the Hong Kong University of Science and Technology. He obtained his B.S. degree from the University of Minnesota and his Ph.D. from the University of Houston. From 1980 to 2000, he served as Professor of Chemical Engineering at the University of Massachusetts, Amherst. Ng joined the Hong Kong Department of Chemical and Biomolecular Eng. in 2000 and served as Head from 2002 to 2005. He was CEO of Nano and Advanced Materials Institute Ltd., a government-funded R&D center, from 2006 to 2013 and served as Corporate Science and Technology Advisor for Mitsubishi Chemical, Japan, from 2001 to 2013. He held visiting positions at DuPont, Massachusetts Institute of Technology, and the National University of Singapore. Ng's research interests center on product conceptualization, process design, and business development involving water, natural herbs, nanomaterials, and advanced materials. He is a fellow of AIChE from which he received the Excellence in Process Development Research Award in 2002.

OBJECTIVES

The principal objective of this textbook, e-book, and accompanying materials, referred to here as *courseware*, is to present modern strategies for the systematic design of chemical products and processes. Product design deals with "What to Make," and process design deals with "How to Make."

Since the early 1960s, undergraduate education of chemical engineers has focused mainly on the engineering sciences. In recent years, however, more scientific approaches to product and process design have been developed, and the need to teach students these approaches has become widely recognized. Consequently, this courseware has been developed to help students and practitioners better use the modern approaches to product and process design. Like workers in thermodynamics; momentum, heat, and mass transfer; and chemical reaction engineering, product and process designers apply the principles of mathematics, chemistry, physics, and biology. Designers also use these principles and those established by engineering scientists to create chemical products and processes that satisfy societal needs while returning a profit. In so doing, designers emphasize the methods of synthesis and optimization in the face of uncertainties, often utilizing the results of analysis and experimentation prepared in cooperation with engineering scientists while working closely with their business colleagues.

This courseware describes the latest design strategies, most of which have been improved significantly by the advent of computers, numerical mathematical programming methods, and artificial intelligence. Because few curricula emphasize design strategies prior to design courses, this courseware is intended to provide a smooth transition for students and engineers who are called upon to design creative new products and processes.

This new edition is a result of an evolution in our approach to teaching design, starting from the first edition, which focused on commodity chemical processes; it was followed by the second edition, which expanded the scope to include the design of chemical products with emphasis on specialty chemicals involving batch rather than continuous processing. This was followed by the third edition, which presented a unified view of the design of basic, industrial, and configured consumer chemical products in the perspective of the Stage-GateTM Product-Development Process (SGPDP). In this fourth edition, we have organized the presentation of product and process design into two separate, although related, activities in a manner so that the two topics can be taught separately or together. Thus, the reader of this edition can choose to focus only on process design or on product design or can choose to study the two in parallel.

This courseware is intended for seniors and graduate students, most of whom have solved a few open-ended problems but have not received instruction in a systematic approach to product and process design. To guide this instruction, the subject matter is presented in five parts. Part I provides introductions to product design in Chapter 1 and to process design in Chapter 2. The two introductions are then followed by Chapter 3, which provides supporting materials for design activity covering literature sources, energy sources, sustainability and environmental protection, safety, and engineering ethics.

Following the introductions in Part I, Part II deals with the synthesis of products and processes. The first two chapters of this part focus on synthesis issues concerning product design, beginning with the design of molecules and mixtures to satisfy customer needs in Chapter 4. More specifically, Chapter 4 describes the use of computer-aided techniques to identify chemicals (e.g., refrigerants, solvents, polymers) and blends and solvent-based products (e.g., paints, lotions, creams) having desired properties. Chapter 5 focuses on the design of devices, functional products, and formulated products whose structure, form, shape, and/or configuration is customized.

The remainder of Part II provides a sequence of six chapters for a systematic approach to process design, starting with Chapter 6, which shows how heuristics can be harnessed to rapidly generate an initial base-case design without doing much analysis. Next, Chapter 7 presents the computational background to the use of simulation in process design, thus providing a means for verifying the heuristic decisions with quantitative analysis. In this regard, Chapter 7 also presents short-cut computation methods. It includes reliable estimation methods for thermophysical and transport properties. These two chapters are followed by chapters covering the synthesis of reactor networks (Chapter 8) and separation trains (Chapter 9), second-law analysis (Chapter 10), and heat and power integration methodology (Chapter 11). Part II also includes coverage of equipment design: Chapter 12 for heat exchangers; Chapter 13 for separation towers; Chapter 14 on pumps, compressors, and expanders; and Chapter 15 on chemical reactor design, focusing on modeling situations in which plug flow and perfect back-mixing assumptions do not hold. The last two chapters of Part II deal with equipment sizing and costing (Chapter 16) and profitability analysis (Chapter 17).

Part III discusses the analysis tools required for both product design and process design; the first two chapters cover analysis in product design. Chapter 18 provides a guide to six-sigma design strategies, which offer a means to improve product quality through the identification of the root causes of variance and their subsequent attenuation. Chapter 19 focuses on the relationship between product technical specifications and the design of the manufacturing plant and discusses issues such as product pricing and demand. Part III also consists of three chapters supporting analysis in process design, starting with Chapter 20 on plantwide controllability assessment followed by Chapter 21 on design optimization and Chapter 22 on the design and scheduling of batch processes.

Part IV describes design reporting in Chapter 23, emphasizing product and process design aspects, with a template provided for writing design reports and with recommendations for preparing oral presentations.

The last part of the book, Part V, is a collection of case studies: three featuring products and one featuring a process. Each of the three product design case studies begins with a discussion of new related technologies. Then, the most important product design steps are covered. Each case study involves some engineering design calculations and/or lab data regression to be performed by students. The process design case study involves the design process for the manufacture of ammonia and describes the development of an initial feasible, but rather unprofitable, base-case design, and then shows how the initial design is systematically refined until it is acceptable.

LIMITED TIME—PROCESS OR PRODUCT DESIGN?

When limited time is available, some faculty and students may prefer to focus on process design rather than *product* design by following the flow chart in Figure i-1. This can be accomplished by beginning in Part I with the introduction in Chapter 2 and coverage on design literature, innovation, energy sources, environmental sustainability, safety, and ethics in Chapter 3; then, Chapters 6-11 from Part II systematically cover heuristics, process simulation, reactor and separation system design, second-law analysis, and heat and power integration. The sequence in Chapters 12-15, detailing equipment design, may be left to students as self-study in connection with their design project work, or portions may be covered in class. Some universities teach process economics as a separate course, but those that do not will need to include Chapter 16, covering cost accounting and capital cost estimation, and Chapter 17, covering profitability analysis. Finally, all or part of the sequence of three chapters from Part III can be included: Chapter 20 on plantwide controllability assessment (probably the most important of the three to cover), Chapter 21 on design optimization (if not covered elsewhere, for example, in a course on numerical methods), and Chapter 22 on the design and scheduling of batch processes. Part IV, covering design reports, should be left to self-study. The case study in Chapter 27 could be used either by students for self-study or could be the subject for a constructive class discussion with students as preparation for their design project work.

Figure i-1 Process design chapter sequence: Chapters for potential self-study are indicated in grey with optional materials indicated in cross-hatched boxes.

Courses that focus on *product* design rather than *process* design can proceed as shown in the flow chart in Figure i-2, starting with the introduction in Chapter 1 followed by materials on the design literature, innovation, energy sources, the environment, sustainability, safety, and ethics in Chapter 3. These could be followed by the two chapters on product design synthesis in Part II on the design of molecules and mixtures (Chapter 4) and on formulated products and devices (Chapter 5). Chapter 19 on decision making in product development should be covered next and then Chapters 21 on design optimization (assuming it is not covered elsewhere) and Chapter 22 on optimal design and scheduling of batch processes. It would be helpful to end the course with detailed coverage of the case studies in Chapters 24–26. As with the process design sequence, it is recommended that Part IV covering design reports be left to self-study.

FORMAT OF COURSEWARE AND SUPPORTING WEB SITE

This courseware takes the form of a conventional textbook now available for the first time as an e-book. Because the design strategies have been elucidated during the development of this courseware, fewer specifics have been provided in the chapters concerning the software packages involved. Instead, a multimedia encyclopedia has been developed to give many examples of simulator input and output with frame-by-frame instructions to discuss the nature of the models provided for the processing units, and it presents several example calculations. The encyclopedia uses voice, video, and animation to introduce new users of the steady-state simulators to the specifics of two of the most widely used process simulation programs, ASPEN PLUS and UniSim[®] Design, as well as instruction in MATLAB. These programs include several tutorials that provide instruction on the solution of problems for courses in mass and energy balances, thermodynamics, fluid mechanics, heat transfer, separations, and reactor design. In many cases, students will have already been introduced to the

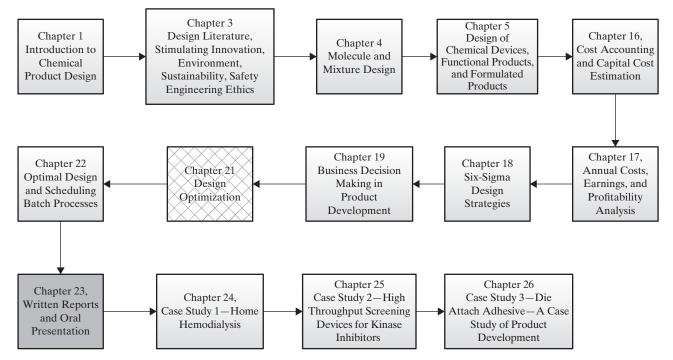


Figure i-2 Product design chapter sequence: Chapters for potential self-study are indicated in grey with optional materials indicated in cross-hatched box.

process simulators in these courses. Also, video segments show portions of a petrochemical complex in operation, including distillation towers, heat exchangers, pumps and compressors, and chemical reactors. The Wiley site¹ that supports this book also includes files that contain the solutions for many examples using either ASPEN PLUS or UniSim[®] Design as well as the MATLAB scripts in Chapter 20. The files are referred to in each example and can easily be used to vary parameters and to explore alternative solutions.

Supplemental sections of several chapters are provided in PDF files on the Wiley site that supports this book with only a brief summary of the material presented in the textbook. Furthermore, Appendix II lists design projects whose problem statements are provided in a PDF file on a University of Pennsylvania site.² These involve the design of chemical processes in several industries. Many are derived from the petrochemical industry with much emphasis on environmental and safety considerations, including the reduction of sources of pollutants and hazardous wastes and the purification before streams are released into the environment. Several projects originate in the biochemicals industry, including fermentations to produce pharmaceuticals, foods, and chemicals. Others involve the manufacture of polymers and electronic materials. Each design problem has been solved by groups of two, three, or four students at the University of Pennsylvania; copies of their design reports are available by Interlibrary Loan from the University of Pennsylvania Library. Since 2011, PDF files are also available from the University of Pennsylvania Library.

ADVICE TO STUDENTS AND INSTRUCTORS

In the use of this textbook and accompanying matter, students and instructors are advised to take advantage of the following features:

Feature 1: Well-organized Sequence of Materials to Teach Product Design

This textbook introduces the key steps in *product* design with numerous examples. These steps have been developed with the assistance and recommendations of successful practitioners of product design in industry. Students can begin with the overview in

¹he-cda.wiley.com/WileyCDA/HigherEdTitle/productCd-0471216631.html.

²www.seas.upenn.edu/~dlewin/UPenn Design Problem Statements.html.

Chapter 1, which introduces the main steps involved in designing products. Computer-aided tools for design of single molecule products and of liquid mixtures and blends are covered in Chapter 4. In Chapter 5, the design of B2C chemical products for which chemical reaction and transport phenomena tend to play a dominant role is discussed in detail. The discussion of business decision making for B2C products, which is discussed in Chapter 19, is more involved than that for B2B products. Three detailed case studies for chemical products are presented in Chapters 24, 25, and 26. These examples can be expanded and/or used as the basis of design projects for student design teams. In our experience, students can frequently formulate their own product design projects based on their own experience and awareness of consumer needs.

Feature 2: Well-organized Sequence of Materials to Teach Process Design

Process synthesis is introduced primarily using heuristics in Chapters 2 and 6, whereas Chapters 8–11 provide more detailed algorithmic methods for chemical reactor network synthesis, separation train synthesis, and heat and power integration. Chapter 7, covering process simulation, provides the basis for testing process design alternatives.

This feature enables the student to begin process designs using easy-to-understand rules of thumb. Once these ideas have been mastered, students can learn algorithmic approaches that enable them to produce better designs. For example, consider how students would design a plant to produce a commodity chemical, say ammonia, from suitable raw materials—in this case, natural gas and air. Chapter 2 introduces process design focusing on the generation of a feasible base-case design, that is, one that satisfies production demands with respect to quantity and quality without necessarily being profitable. Most, if not all, of the decisions made at this point rely on heuristics, which are introduced in Chapter 2 and covered more thoroughly in Chapter 6. Because the implementation and testing of design ideas are carried out using process simulation, this is supported by the systematic coverage of the efficient use of process simulation in Chapter 7, as well as in the multimedia encyclopedia that is available on the Wiley Web site that supports this book. Attempts to improve profitability use methodologies for reactor network synthesis described in Chapter 8 (one of the examples in that chapter shows how to optimally operate a cold-shot ammonia converter) and separation network synthesis presented in Chapter 9 (although not important for ammonia synthesis). At this stage, students should be ready to learn about how heat integration can improve their design; Chapter 11 provides them a comprehensive guide, which also includes worked examples directly relevant to the problem(s) at hand. Cost accounting and profitability analysis are handled formally in Chapters 16 and 17, which provide a basis for estimating the degree to which their process is cost effective. This whole sequence can be used to support an entire design project as illustrated in Chapter 27, a case study that goes through the entire design process for a plant to produce 450 MTD of ammonia.

Feature 3: Instruction in the Use of Simulators

Throughout this courseware, various methods are used to perform extensive process-design calculations and provide graphical results that are visualized easily including the use of computer programs for simulation and design optimization. The use of these programs is an important attribute of this courseware. We believe that our approach is an improvement over an alternative approach that introduces the strategies of process synthesis without computer *methods*, emphasizing heuristics and back-of-the-envelope calculations. We favor a blend of heuristics and analysis using the computer by augmenting the heuristic approach with an introduction to the analysis of prospective flowsheets using industrial-quality simulators, such as ASPEN PLUS, HYSYS.Plant, UniSim® Design, PRO-II, CHEMCAD, FLOW-TRAN, BATCH PLUS, and SUPERPRO DESIGNER. These simulators permit access to large physical property, equipment, and cost databases and the examination of aspects of numerous chemical processes. Simulators facilitate the search for optimal operating conditions to improve profitability. Emphasis is on the use of simulators to obtain data and perform tedious engineering calculations. Today, most schools use one of these simulators but often without adequate teaching materials. Consequently, the challenge for us in the preparation of this courseware was to find the proper blend of modern computational approaches with simple heuristics.

Through the use of the process simulators, which are widely used in industry, students learn how easy it is to obtain data and perform routine calculations. They learn effective approaches to building knowledge about a process through simulation. The courseware provides students the details of the methods used for property estimation and equipment modeling. They learn to use simulators intelligently and to check their results. For example, in Chapter 2, examples show how to use simulators to assemble a preliminary database and to perform routine calculations when computing heat loads, heats of reaction, and vapor–liquid equilibria. In Chapter 7, two examples show how to use the simulators to assist in the synthesis of toluene hydrodealkylation and monochlorobenzene separation processes. Most of the remaining chapters show examples of the use of simulators to obtain additional information, including equipment sizes, costs, profitability analyses, and the performance of control systems.

Because the book and the accompanying materials contain many routine self-study examples of how the simulators are useful in building a process design, the instructor has time to emphasize other aspects of process design. Through the examples and multimedia encyclopedia with emphasis on ASPEN PLUS and UniSim[®] Design, students obtain the details they need to use the simulators effectively, saving the instructor time in class and in answering detailed questions as students prepare their designs. Consequently, students obtain a better understanding of the design process and are exposed to a broader array of concepts in process design. In a typical situation when creating a base-case design, students use the examples in the text and the encyclopedic modules and the tutorials to learn how to obtain physical property estimates, heats of reaction, flame temperatures, and phase distributions. Then, students learn to create a reactor section using the simulators to perform routine material and energy balances. Next, students create a separation section and may eventually add recycle streams. Thanks to the coverage of the process simulators in Chapters 2 and 7 and the supporting materials, the instructor needs to review only the highlights in class.

In the preparation of this courseware, several graduate and postdoctoral students made significant contributions; they include Charles W. White III, George J. Prokopakis, Joseph W. Kovach III, Tulio R. Colmenares, Miriam L. Cygnarowicz, Alden N. Provost, David D. Brengel, Soemantri Widagdo, Amy C. Sun, Roberto Irrizary-Rivera, Leighton B. Wilson, James R. Phimister, Pramit Sarma, Thomas A. Adams II, and Cory S. Silva at the University of Pennsylvania; Oren Weitz, Boris Solovyev, Eyal Dassau, Joshua Golbert, Eytan Filiba, Eran Nahari, Uri Ash-Kurtlander, Michael Patrascu, Ronen Ben-Nun, and Elior Ben Moshe at the Technion. The successes in our product and process design courses are closely related to the many contributions of these graduate and postdoctoral students. Their help is very much appreciated.

Students at the Technion, Eyal Dassau, Joshua Golbert, Garry Zaiats, Daniel Schweitzer, and Eytan Filiba, and students at the University of Pennsylvania, Murtaza Ali, Scott Winters, Diane M. Miller, Michael DiTillio, Christopher S. Tanzi, Robert C. Chang, Daniel N. Goldberg, Matthew J. Fucci, Robyn B. Nathanson, Arthur Chan, Richard Baliban, Joshua Levin, and Larry Dooling, implemented the multimedia encyclopedia on the use of process simulators. Their efforts are also appreciated. In this regard, seed money for the initial development of the multimedia encyclopedia was provided by Dean Gregory Farrington, University of Pennsylvania, and is acknowledged gratefully. In addition, at the University of Pennsylvania, Matthew Gay, Evans Molel, and Brian Downey provided much assistance in preparing the materials on equipment sizing and profitability analysis; as did Professor Russell Dunn at Vanderbilt University. Their contributions are very much appreciated. Ideas contributed to chapters on product design and help with examples, exercises, and figures came from colleagues at the Hong Kong University of Science and Technology, Kelvin Fung, Tin Lau, Crystal Luo, Judy Zhang, and Carrie Lam; graduate students, Miki Ge, Neil Tan, Kee Tam, Faheem Mushtaq, and Lawrence Yan; former colleagues, Chris Wibowo, Tracy Liu, and Alice Cheng. Special thanks go to Tin Lau who also did the hand drawings in this book. Colleague Dr. Deenesh K Babi and Ph.D. students Mr. Anjan K Tula and Miss Sawitree Kalakul at the SPEED research group, Department of Chemical & Biochemical Engineering, Technical University of Denmark helped with the figures, the tables and to check simulation results.

Several colleagues at the University of Pennsylvania and industrial consultants from local industry in the Philadelphia area were very helpful as these materials evolved, especially Arnold Kivnick, Leonard A. Fabiano, Scott L. Diamond, John C. Crocker, Talid Sinno, Adam Brostow (Air Products and Chemicals), Robert M. Busche (Bio-en-gene-er Associates), F. Miles Julian, Robert F. Hoffman, Robert Nedwick (Penn State University, formerly ARCO Chemical Company), Robert A Knudsen (Lyondell), David Kolesar (Dow), Bruce M. Vrana (DuPont), and John A. Wismer (Arkema).

Four faculty, Michael E. Hanyak, Jr. (Bucknell University), Daniel W. Tedder (Georgia Institute of Technology), Dale E. Briggs (University of Michigan), and Colin S. Howat (Kansas University), reviewed a preliminary version of the first edition. Three additional faculty, John T. Baldwin (Texas A&M University), William L. Luyben (Lehigh University), and Daniel A. Crowl (Michigan Technology Institute), reviewed a preliminary version of the second edition. In addition, Professor Ka Ng (Hong Kong University of Science and Technology), Dr. Soemantri Widgado (3M Co.), Professor Costas Maranas (Penn State), and Professor Luke Achenie (Virginia Tech, formerly Connecticut) reviewed selected chapters for the second edition. Three additional faculty, Barry Barkel (Michigan), Miguel Bagajewicz (Oklahoma), and Dimitrios V. Papavassiliou (Oklahoma), reviewed a preliminary version of the third edition. Their suggestions and critiques were particularly helpful.

It is of special note that, during the preparation of the first edition, Professors Christodoulos A. Floudas (Texas A&M, formerly Princeton) and William L. Luyben (Lehigh University) provided W.D. Seider an opportunity to lecture in their classes and use some of these materials as they were being developed. Their interactions and insights have been very helpful.

Throughout the development of the first and second editions and their accompanying materials, A. Wayne Anderson, the Editor for College Publishing at John Wiley, was extremely helpful. His excellent advice and guidance are very much appreciated. After our second edition appeared, Jennifer Welter, then Editor for College Publishing, provided much assistance in formulating our plans for the third edition. When preparing this fourth edition, we received much assistance from those taking her position, Dan Sayre and Vanya Gupta.

It is important to acknowledge the secretarial support provided in the most efficient and effective manner by John Linscheid, who made it possible to prepare the first edition. Also, the assistance of Meghan Godfrey and Denice Gorte in obtaining permissions to publish third-party sources was very helpful and appreciated.

Finally, W.D. Seider received two Lady Davis Visiting Professorships at the Technion during the spring of 1996 and 2002 and spent a sabbatical leave at 3M Co. in the spring of 2007. D.R. Lewin was a Visiting Professor at the University of Pennsylvania during the summer of 1997. Financial support in connection with these sabbatical leaves enabled them to work on the manuscript and is very much appreciated.

The support of 3M Co. during the preparation of the third edition is gratefully acknowledged. Soemantri Widagdo thanks Professor Saswinadi Sasmojo (Institute Technology Bandung, Indonesia) for providing his first experience in product design involving an electrical generator using biomass gasification.

> February 2016 W. D. Seider, D. R. Lewin, J. D. Seader, S. Widagdo, R. Gani, K. M. Ng.

PART ONE	INTRODUCTION TO PRODUCT AND PROCESS DESIGN	1
Chapter 1 Chapter 2	Introduction to Chemical Product Design Introduction to Process Design	3 19
Chapter 3	Design Literature, Stimulating Innovation, Energy, Environment, Sustainability, Safety, Engineering Ethics	47
PART TWO	DESIGN SYNTHESIS—PRODUCT AND PROCESSES	77
Chapter 4	Molecular and Mixture Design	79
Chapter 5	Design of Chemical Devices, Functional Products, and Formulated Products	110
Chapter 6	Heuristics for Process Synthesis	132
Chapter 7	Simulation to Assist in Process Creation	162
Chapter 8	Synthesis of Networks Containing Reactors	209
Chapter 9	Synthesis of Separation Trains	234
Chapter 10	Second-Law Analysis	287
Chapter 11	Heat and Power Integration	316
Chapter 12	Heat Exchanger Design	358
Chapter 13	Separation Tower Design	386
Chapter 14	Pumps, Compressors, and Expanders	397
Chapter 15	Chemical Reactor Design	405
Chapter 16	Cost Accounting and Capital Cost Estimation	426
Chapter 17	Annual Costs, Earnings, and Profitability Analysis	498
PART THREE	DESIGN ANALYSIS—PRODUCT AND PROCESS	551
Chapter 18	Six-Sigma Design Strategies	553
Chapter 19	Business Decision Making in Product Development	566
Chapter 20	Plantwide Controllability Assessment	576
Chapter 21	Design Optimization	597
Chapter 22	Optimal Design and Scheduling of Batch Processes	616
PART FOUR	DESIGN REPORTS—PRODUCT AND PROCESS	629
Chapter 23	Written Reports and Oral Presentations	631
PART FIVE	CASE STUDIES—PRODUCT AND PROCESS DESIGNS	643
Chapter 24	Case Study 1—Home Hemodialysis Devices	645
Chapter 25	Case Study 2—High Throughput Screening Devices for Kinase Inhibitors	657
Chapter 26	Case Study 3—Die Attach Adhesive: A Case Study of Product Development	674
Chapter 27	Case Study 4—Ammonia Process	683
Appendix I	Residue Curves for Heterogeneous Systems	704
Appendix II	Design Problem Statements by Area	705
Appendix III	Materials of Construction	709
	Table of Acronyms	711
	Author Index	719
	Subject Index	725

PART ONE INTRODUCTION TO PRODUCT AND PROCESS DESIGN 1 Chapter 1 **Introduction to Chemical Product Design** 3 1.0 Objectives 3 1.1 Introduction 3 1.2 3 The Diversity of Chemical Products 3 The Chain of Chemical Products 5 Companies Engaging in Production of Chemical Products **B2B** and **B2C** Chemical Products 5 7 Market Sectors and Classes of Chemical Products 1.3 7 Product Design and Development Tasks and Phases in Product Design and Development 7 Project Management 8 Market Study 10 Product Design 13 Feasibility Study 14 Prototyping 16 1.4 Summary 16 References 17 Exercises 17 Chapter 2 **Introduction to Process Design** 19 2.0 Objectives 19 2.1 Introduction 19 Information Gathering 19 Environmental and Safety Data 20 21 **Chemical Prices** 21 Summary 2.2 Experiments 21 2.3 Preliminary Process Synthesis 21 **Chemical State** 22 22 **Process Operations** Synthesis Steps 23 Continuous or Batch Processing 24 2.4 Next Process Design Tasks 40 Flowsheet Mass Balances 40 **Process Stream Conditions** 40

Flowsheet Material and Energy Balances

40

		Equipment Sizing and Costing	40
		Economic Evaluation	41
		Heat and Mass Integration	41
		Environment, Sustainability, and Safety	41
		Controllability Assessment	41
		Optimization	41
	2.5	Preliminary Flowsheet Mass Balances	41
		Flow Diagrams	41
	2.6	Summary	45
		References	45
		Exercises	45
Chapter 3		gn Literature, Stimulating Innovation, Energy, Environme ıstainability, Safety, Engineering Ethics	ent, 47
	3.0	Objectives	47
	3.1	Design Literature	47
	5.1	Information Resources	47
		General Search Engines and Information Resources	49
	3.2	Stimulating Invention and Innovation	50
	3.3	Energy Sources	51
	010	Coal, Oil, and Natural Gas	52
		Shale Oil	52
		Shale Gas	52
		Hydrogen	53
		Hydrogen Production	53
		Fuel Cell Energy Source	54
		Hydrogen Adsorption	54
		Biofuels	54
		Solar Collectors	54
		Wind Farms	55
		Hydraulic Power	55
		Geothermal Power	55
		Nuclear Power	55
		Selection of Energy Sources in Design	56
	3.4	Environmental Protection	56
		Environmental Issues	56
		Environmental Factors in Product and Process Design	58
	3.5	Sustainability	60
		Introduction—Key Issues	60
		Sustainability Indicators	61
		Life-Cycle Analysis	63
	3.6	Safety Considerations	63
		Safety Issues	63
		Design Approaches Toward Safe Chemical Plants	65
	3.7	Engineering Ethics	70

		3.8	Summary	73
			References	73
			Exercises	74
			upplement to Chapter 3—NSPE Code of Ethics Online www.wiley.com/college/Seider)	
PART TWO	DESIGN S	SYNTH	IESIS—PRODUCT AND PROCESSES	77
Chapter	4	Mole	ecular and Mixture Design	79
		4.0	Objectives	79
		4.1	Introduction	79
		4.2	Framework for Computer-Aided Molecular-Mixture Design	81
			Molecular Structure Representation	82
			Generation of Molecule-Mixture Candidates	84
			CAMD/CAM ^b D—Mathematical Formulations of Molecular and/or Mixture Design Problems	90
			Software for CAMD/CAM ^b D	90 93
			CAMD/CAM ^b D Solution Approaches	95 95
		4.3	Case Studies	93 98
		т.5	Refrigerant Design	98
			Large Molecule (Surfactant) Design	100
			Active Ingredient Design/Selection	100
			Polymer Design	101
			Dichloromethane (DCM) Replacement in Organic Synthesis	102
			Azeotrope Formation	103
			Solvent Substitution	103
			Mixture Design	106
		4.4	Summary	107
			References	107
			Exercises	108
Chapter	5	Desi	gn of Chemical Devices, Functional Products, and	
		Fo	ormulated Products	110
		5.0	Objectives	110
		5.1	Introduction	110
		5.2	Design of Chemical Devices and Functional Products The Use of Models in Design of Devices and Functional Products	112 113
		5.3	Design of Formulated Products	117
		5.4	Design of Processes for B2C Products	123
		5.5	Summary	126
			References	127
			Exercises	127
Chapter	6	Heu	ristics for Process Synthesis	132
-		6.0	Objectives	132
		6.1	Introduction	133

Chapter 7

6.2	Raw Materials and Chemical Reactions	133
6.3	Distribution of Chemicals	135
	Excess Chemicals	135
	Inert Species	135
	Purge Streams	137
	Recycle to Extinction	139
	Selectivity	140
	Reactive Separations	141
	Optimal Conversion	141
6.4	Separations	141
	Separations Involving Liquid and Vapor Mixtures	141
	Separations Involving Solid Particles	144
6.5	Heat Removal From and Addition to Reactors	145
	Heat Removal from Exothermic Reactors	146
	Heat Addition to Endothermic Reactors	148
6.6	Heat Exchangers and Furnaces	148
6.7	Pumping, Compression, Pressure Reduction, Vacuum, and Conveying of Solids	150
	Increasing the Pressure	150
	Decreasing the Pressure	151
	Pumping a Liquid or Compressing a Gas	152
	Vacuum	152
	Conveying Granular Solids	153
	Changing the Pressure of Granular Solids	153
6.8	Changing the Particle Size of Solids and Size Separation of Particles	153
6.9	Removal of Particles From Gases and Liquids	154
6.10	Considerations that Apply to the Entire Flowsheet	154
6.11	Summary	155
	References	159
	Exercises	160
Simu	lation to Assist in Process Creation	162
7.0	Objectives	162
7.1	Introduction	162
7.2	Principles of Process Simulation	163
	Definition of Terms	163
	Important Process Simulation Issues	164
7.3	Process Creation through Process Simulation	176
	Entry-1	176
	Entry-2	177
	Entry-3	177
	Entry-4	177
7.4	Case Studies	184
7.5	Principles of Batch Flowsheet Simulation	194
7.6	Summary	201
	References	202
	Exercises	202

Chapter 8	Synt	hesis of Networks Containing Reactors	209
	8.0	Objectives	209
	8.1	Introduction	209
	8.2	Reactor Models in the Process Simulators	210
		Reaction Stoichiometry	210
		Extent of Reaction	210
		Chemical Equilibrium	211
		Kinetics	212
		Ideal Kinetic Reaction Models—CSTRs and PFRs	213
	8.3	Reactor Network Design Using the Attainable Region	215
		Construction of the Attainable Region	216
		The Principle of Reaction Invariants	219
	8.4	Reactor Design for Complex Configurations	220
		Heat Exchange Reactor	220
		Temperature Control Using Dilutent	220
		Temperature Control Using External Heat Exchange or Cold-shots	221
	8.5	Locating the Separation Section with Respect to the Reactor Section	224
	8.6	Trade-Offs in Processes Involving Recycle	227
	8.7	Optimal Reactor Conversion	228
	8.8	Recycle to Extinction	229
	8.9	Snowball Effects in the Control of Processes Involving Recycle	231
	8.10	Summary	231
		References	232
		Exercises	232
Chapter 9	Synt	hesis of Separation Trains	234
L	9.0	Objectives	234
	9.1	Introduction	234
		Feed Separation System	234
		Phase Separation of Reactor Effluent	235
		Industrial Separation Operations	238
	9.2	Criteria for Selection of Separation Methods	241
		Phase Condition of the Feed as a Criterion	241
		Separation Factor as a Criterion	242
		Reason for the Separation as a Criterion	244
	9.3	Selection of Equipment	244
		Absorption, Stripping, and Distillation	244
		Liquid–Liquid Extraction	244
		Membrane Separation	244
		Adsorption	244
		Leaching	245
		Crystallization	245
		Drying	245
	9.4	Sequencing of Ordinary Distillation Columns for the Separation of Nearly	
		Ideal Liquid Mixtures	245
		Column Pressure and Type of Condenser	245
		Number of Sequences of Ordinary Distillation Columns	245

			Heuristics for Determining Favorable Sequences	248
			Sequencing of General Vapor-Liquid Separation Processes	249
			Marginal Vapor Rate Method	254
			Complex and Thermally Coupled Distillation Columns	255
		9.5	Sequencing of Operations for the Separation of Nonideal Liquid Mixtures	257
			Azeotropy	258
			Residue Curves	260
			Simple Distillation Boundaries	261
			Distillation Towers	262
			Distillation Lines	262
			Computing Azeotropes for Multicomponent Mixtures	263
			Distillation-Line Boundaries and Feasible Product Compositions	263
			Heterogeneous Distillation	264
			Multiple Steady States	266
			Pressure-Swing Distillation	268
			Membranes, Adsorbers, and Auxiliary Separators	270
			Reactive Distillation	270
			Separation Train Synthesis	270
		9.6	Separation Systems for Gas Mixtures	277
			Membrane Separation by Gas Permeation	278
			Adsorption	278
			Absorption	278
			Partial Condensation and Cryogenic Distillation	279
		9.7	Separation Systems for Solid-Fluid Mixtures	279
		9.8	Summary	280
		210	References	280
			Exercises	282
Chapter	10	Socor	nd-Law Analysis	287
Chapter	10	10.0	Objectives	287
				287
		10.1 10.2	Introduction The System and the Surroundings	287
		10.2	The System and the Surroundings Energy Transfer	289
		10.3		289 290
		10.4	Thermodynamic Properties Typical Entropy Changes	290 291
			Thermodynamic Availability	291
				292 293
		10.5	Typical Availability Changes Equations for Second-Law Analysis	295 295
		10.5	· ·	293 297
		10.0	Examples of Lost-Work Calculations Thermodynamic Efficiency	297
		10.7	Causes of Lost Work	299 300
		10.8		300
			Three Examples of Second-Law Analysis	
		10.10	Summary References	310
			Exercises	310 310
Chapter	11		and Power Integration	316
		11.0	Objectives	316
		11.1	Introduction	316

11.2	Minimum Utility Targets	319
	Composite Curve Method	320
	Temperature-Interval (TI) Method	322
11.3	Networks for Maximum Energy Recovery	325
	Stream Matching at the Pinch	325
11.4	Minimum Number of Heat Exchangers	329
	Reducing the Number of Heat Exchangers—Breaking	
	Heat Loops	329
	Reducing the Number of Heat Exchangers—Stream Splitting	332
11.5	Threshold Approach Temperature	334
11.6	Optimum Approach Temperature	336
11.7	Multiple Utilities	337
	Designing HENs Assisted by the Grand Composite Curve	337
11.8	Heat-Integrated Reactors and Distillation Trains	342
	Appropriate Placement of Reactors and Distillation Columns	342
	Impact of Operating Pressure of Distillation Columns	343
	Multiple-Effect Distillation	344
	Heat Pumping, Vapor Recompression, and Reboiler Flashing	348
11.9	Heat Engines and Heat Pumps	348
11.10	Summary	351
	Heat Integration Software	351
	References	352
	Exercises	352
	Supplements to Chapter 11—MILP and MINLP Applications in HEN Synthesis	
	(Online www.wiley.com/college/Seider)	
11S-1.0	5	
11S-1.1		
11S-1.2	MER Design Using Mixed-Integer Linear Programming (MINLP)	
11S-1.3	Superstructures for Minimization of Annual Costs	
11S-1.4		
	Case Study 11S-1.1 Optimal Heat-Integration for the ABCDE Process	
	Case Study 11S-1.2 Optimal Heat-Integration for an Ethylene Plant	
11S-1.5	Summary	
11S-1.6		
11S-2	-	
(•	
11S-2.0	References Supplement to Chapter 11—Mass Integration (Online www.wiley.com/college/Seider)	
	References Supplement to Chapter 11—Mass Integration (Online www.wiley.com/college/Seider)	
11 S -2.0	References Supplement to Chapter 11—Mass Integration (Online www.wiley.com/college/Seider) Objectives Introduction	
11S-2.0 11S-2.1	References Supplement to Chapter 11—Mass Integration (Online www.wiley.com/college/Seider) Objectives Introduction Minimum Mass-Separating Agent	
11S-2.0 11S-2.1 11S-2.2	References Supplement to Chapter 11—Mass Integration (Online www.wiley.com/college/Seider) Objectives Introduction Minimum Mass-Separating Agent Mass Exchange Networks for Minimum External Area	

- 11S-2.6 Summary
- 11S-2.7 References

Chapter 12	Heat	Exchanger Design	358
-	12.0	Objectives	358
	12.1	Introduction	358
		Heat Duty	358
		Heat-Transfer Media	360
		Temperature-driving Force for Heat Transfer	361
		Pressure Drop	363
	12.2	Equipment for Heat Exchange	363
		Double-Pipe Heat Exchangers	364
		Shell-and-tube Heat Exchangers	365
		Air-Cooled Heat Exchangers	370
		Compact Heat Exchangers	370
		Furnaces	371
		Temperature-driving Forces in Shell-and-tube Heat Exchangers	371
	12.3	Heat-Transfer Coefficients and Pressure Drop	375
		Estimation of Overall Heat-transfer Coefficients	375
		Estimation of Individual Heat-transfer Coefficients and Frictional	275
		Pressure Drop	375
		Turbulent Flow in Straight, Smooth Ducts, Pipes, and Tubes of Circular Cross Section	377
		Turbulent Flow in the Annular Region Between Straight, Smooth, Concentric Pipes of Circular Cross Section	378
		Turbulent Flow on the Shell Side of Shell-and-tube Heat Exchangers	378
		Heat-transfer Coefficients for Laminar-flow, Condensation, Boiling, and Compact Heat Exchangers	379
	12.4		380
	12.4	Design of Shell-and-Tube Heat Exchangers	384
	12.5	Summary References	384
		Exercises	384
GL (12	C		207
Chapter 13	-	ration Tower Design	386
	13.0	Objectives	386
	13.1	Operating Conditions	386
	13.2	Fenske-Underwood-Gilliland (FUG) Shortcut Method for Ordinary Distillation	387
	13.3	Kremser Shortcut Method for Absorption and Stripping	388
	13.4	Rigorous Multicomponent, Multiequilibrium-Stage Methods with a Simulator	389
	13.5	Plate Efficiency and HETP	391
	13.6	Tower Diameter	392
	10.0	Tray Towers	392
		Packed Towers	393
	13.7	Pressure Drop and Weeping	393
	13.7	Summary	395
	1010	References	395
		Exercises	396

Chapter 14	Pum	ps, Compressors, and Expanders	397
	14.0	Objectives	397
	14.1	Pumps	397
		Centrifugal Pumps	397
		Positive-displacement Pumps	399
		Pump Models in Simulators	400
	14.2	Compressors and Expanders	401
		Centrifugal Compressors	401
		Positive-displacement Compressors	401
		Expanders	402
		Compressor and Expander Models in Simulators	403
	14.3	Summary	403
		References	404
		Exercises	404
Chapter 15	Chen	nical Reactor Design	405
	15.0	Objectives	405
	15.1	Introduction	405
	15.2	Limiting Approximate Models for Tubular Reactors	405
	15.3	The COMSOL CFD Package	407
	15.4	CFD for Tubular Reactor Models	410
	15.5	Nonisothermal Tubular Reactor Models	418
	15.6	Mixing in Stirred-Tank Reactors	423
	15.7	Summary	424
		References	425
		Exercises	425
Chapter 16	Cost	Accounting and Capital Cost Estimation	426
	16.0	Objectives	426
	16.1	Accounting	426
		Debits and Credits	426
		The Annual Report (Form 10-K)	427
		The Balance Sheet	428
		The Income Statement	430
		The Cash Flow Statement	430
		Financial Ratio Analysis	432
		Cost Accounting	433
	16.2	Cost Indexes and Capital Investment	434
		Cost Indexes	434
		Commodity Chemicals	435
		Economy-of-scale and the Six-tenths Factor	435
		Typical Plant Capacities and Capital Investments for Commodity Chemicals	437
	16.3	Capital Investment Costs	438
		Direct Materials and Labor (M&L)	440
		Indirect Costs	441

	Other Investment Costs	441
	Example of an Estimate of Capital Investment	443
16.4	Estimation of the Total Capital Investment	444
	Method 1. Order-of-Magnitude Estimate (based on the	
	method of Hill, 1956)	445
	Method 2. Study Estimate (based on the overall factor method of Lang, 1947a, b, and 1948)	446
	Method 3. Preliminary Estimate (Based on the Individual Factors Method of Guthrie, 1946, 1974)	448
16.5	Purchase Costs of the Most Widely Used Process Equipment	449
	Pumps and Electric Motors	450
	Pump and Motor Purchase Costs	451
	Fans, Blowers, and Compressors	456
	Heat Exchangers	461
	Fired Heaters	463
	Pressure Vessels and Towers for Distillation, Absorption, and Stripping	464
16.6	Purchase Costs of Other Chemical Processing Equipment	470
	Adsorption Equipment	470
	Agitators (propellers and turbines)	470
	Autoclaves	470
	Crystallizers	471
	Drives Other than Electric Motors	471
	Dryers	471
	Dust Collectors	471
	Evaporators	472
	Fired Heaters for Specific Purposes	472
	Liquid–Liquid Extractors	472
	Membrane Separations	473
	Mixers for Powders, Pastes, and Doughs	473
	Power Recovery	473
	Screens	474
	Size Enlargement	474
	Size Reduction Equipment	474
	Solid–liquid Separation Equipment (thickeners, clarifiers, filters, centrifuges, and expression)	474
	Solids-Handling Systems	477
	Storage Tanks and Vessels	478
	Vacuum Systems	479
	Wastewater Treatment	480
16.7	Equipment Costing Spreadsheet	486
16.8	Equipment Sizing and Capital Cost Estimation Using	
	Aspen Process Economic Analyzer (APEA)	486
	Equipment Sizing and Costing in ASPEN PLUS Using Built-in	
	APEA Features	486
16.9	Summary	493
	References	493
	Exercises	494

Chapter 17	Annı	al Costs, Earnings, and Profitability Analysis	498
	17.0	Objectives	498
	17.1	Introduction	498
	17.2	Annual Sales Revenues, Production Costs, and the Cost Sheet	499
		Sales Revenue	499
		Feedstocks	499
		Utilities	501
		Labor-related Operations, O	505
		Maintenance, M	506
		Operating Overhead	506
		Property Taxes and Insurance	507
		Depreciation, D	507
		Rental Fees	507
		Licensing Fees	507
		Cost of Manufacture, COM	507
		Total Production Cost, C	507
		Pre-Tax (Gross) Earnings and After-Tax (Net) Earnings	
		(Profit)	509
	17.3	Working Capital and Total Capital Investment	509
	17.4	Approximate Profitability Measures	510
		Return on Investment (ROI)	510
		Payback Period (PBP)	510
		Venture Profit (VP)	511
		Annualized Cost (C_A)	512
		Product Selling Price for Profitability	512
	17.5	Time Value of Money	513
		Compound Interest	513
		Nominal and Effective Interest Rates	515
		Continuous Compounding of Interest	515
		Annuities	516
		Present Worth of an Annuity	518
		Comparing Alternative Equipment Purchases	519
	17.6	Cash Flow and Depreciation	520
		Depreciation	521
		Depletion	524
	17.7	Rigorous Profitability Measures	525
		Net Present Value (NPV)	526
		Investor's Rate of Return (IRR or DCFRR)	526
		Inflation	527
	17.8	Profitability Analysis Spreadsheet	529
		General Instructions for Use of Profitability Analysis—4.0.xls	529
	17.9	Summary	545
		References	546
		Exercises	546
			2.0

PART THREE DESIGN ANALYSIS—PRODUCT AND PROCESS

18.1 Introduction 5	553 553 553 553
	553
18.2 Six-Sigma Methodology in Product Design and Manufacturing	
10.2 Six Signia Methodology in Froduct Design and Manufacturing	553
Definitions	
Cost of Defects 5	555
Methods to Monitor and Reduce Variance 5	556
Six-Sigma for Product Design 5	557
18.3 Example Applications 5	557
18.4 Summary 5	564
References	564
Exercises	565
18S Supplement to Chapter 18 (Online www.wiley.com/college/Seider)	
18S.1Penicillin Fermenter Model	
18S.2 Reactive Extraction and Re-extraction Model	
References	
Chapter 19 Business Decision Making in Product Development 5	566
	566
•	566
19.2 Economic Analysis 5	566
	567
	568
	570
•	572
-	572
	573
	573
	574
	574
	575
Exercises 5	575
Chapter 20 Plantwide Controllability Assessment 5	576
	576
	576
	579
	579
	580
	580
	580
	581
	584

551

20.4	Summary	590
	References	590
	Exercises	591

20S Supplement to Chapter 20 (Online www.wiley.com/college/Seider)

20S.0	Objectives
20S.1	Generation of Linear Models in Standard Forms
20S.2	Quantitative Measures for Controllability and Resiliency
20S.3	Towards Automated Flowsheet C&R Diagnosis
20S.4	Control Loop Definition and Tuning
20S.5	Case Studies
	Case Study 20S.1 Exothermic Reactor Design for the Production of Propylene Glycol
	Case Study 20S.2 Two Alternative Heat Exchanger Networks
	Case Study 20S.3 Interaction of design and Control in the MCB Separation Process
20S.6	MATLAB for C&R Analysis
20S.7	Summary
	References

Exercises

Chapter 21	Desig	gn Optimization	597
_	21.0	Objectives	597
	21.1	Introduction	597
	21.2	General Formulation of the Optimization Problem	598
		Objective Function and Decision variables	598
		Equality Constraints	598
		Inequality Constraints	599
		Lower and Upper Bounds	599
	21.3	Classification of Optimization Problems	599
	21.4	Linear Programming (LP)	601
	21.5	Nonlinear Programming (NLP) with a Single Variable	603
		Golden-section Search	603
	21.6	Conditions for Nonlinear Programming (NLP) by Gradient Methods with Two or More Decision Variables	605
		General Formulation	606
		Stationarity Conditions	606
		Solution of the Stationarity Equations	606
	21.7	Optimization Algorithm	607
		Repeated Simulation	608
		Infeasible Path Approach	608
		Compromise Approach	608
		Practical Aspects of Flowsheet Optimization	608
	21.8	Flowsheet Optimizations—Case Studies	609
	21.9	Summary	611
		References	612
		Exercises	612

Chapter	22 Opt	imal Design and Scheduling of Batch Processes	616
	22.0	Objectives	616
	22.1	Introduction	616
	22.2	Design of Batch Process Units	617
		Batch Processing	617
		Fed-batch Processing	618
		Batch-product Removal	619
	22.3	Design of Reactor-Separator Processes	620
	22.4	Design of Single-product Processing Sequences	622
		Batch Cycle Times	623
		Intermediate Storage	623
		Batch Size	623
	22.5	Design on Multiproduct Processing Sequences	625
		Scheduling and Designing Multiproduct Plants	625
	22.6	Summary	626
		References	626
		Exercises	627
PART FOUR	DESIGN REPO	RTS—PRODUCT AND PROCESS	629
Chapter	23 Wri	tten Reports and Oral Presentations	631
Chapter	23.0	Objectives	631
	23.0	Contents of the Written Report	632
	23.1	Items of the Report	632
	23.2	Preparation of the Written Report	636
	23.2	Coordination of the Design Team	636
		Project Notebook	636
		Milestones	636
		Word Processing	637
		Editing	637
		Page Format	637
		Sample Design Reports	638
	23.3	Oral Design Presentations	638
		Typical Presentation	638
		Media for the Presentation	638
		Preparation of Exhibits	638
		Rehearsing the Presentation	638
		Written Handout	639
		Evaluation of the Oral Presentation	639
		DVDs and YouTube	641
	23.4	Award Competition	641
	23.5	Summary	641
		References	641

PART FIVE	CASE STUDIES-	-PRODUCT AND PROCESS DESIGNS	643
Chapter	24 Case	Study 1—Home Hemodialysis Devices	645
	24.0	Objectives	645
	24.1	Hemodialysis Technology	645
		Hemodialysis Device Inventions	645
		Innovation Map	647
	24.2	Design Specifications of Home Hemodialysis Device	652
		Project Charter—Objective Time Chart	652
		Opportunity Assessment	653
		Technical Requirements: Design Objectives	653
		Manufacturing Cost Target	655
	24.3	Summary	655
		References	655
		Bibliography Patents—Hemodialysis Devices—General	655
		Patents—Hemodialysis Devices—Hollow-Fiber Membranes	656
		Patents—Hemodialysis Devices—Dialysate Regeneration	656
		Patents—Hemodialysis Devices—Alarms/User Interface	656
		Exercises	656
Chapter	25 Case	Study 2—High Throughput Screening Devices for Kinase	
F		nibitors	657
	25.0	Objectives	657
	25.1	Background Technology For High Throughput Screening of Kinase Inhibitors	657
		Kinase Reactions and Lab-on-a-chip Inventions	657
		Innovation Map	660
	25.2	Product Concept	665
		Generating Product Concepts	665
		Fluidigm Chip	665
		RainDance Chip	667
	25.3	Prototyping	669
		Business Case	671
		Intellectual Property Assessment	672
	25.4	Product Development	672
	25.5	Summary	672
		References	672
		Patents	673
		Exercises	673
Chapter	26 Case	Study 3—Die Attach Adhesive: A Case Study of Product	
Chapter		velopment	674
	26.0	Objectives	674

26.1Background of Technology674

	26.2	Market Study	674
		Competitive Analysis	674
		Market Size	675
	26.3	Product Design	677
		Conceptualization of Product Microstructure	677
		Selection of Ingredients	677
	26.4	Process Design	678
		Synthesis of Ingredients: Silver Nanoparticles	678
		Preparation of DAA Product	678
		Collection of Process Data for DAA	678
	26.5	Prototyping	678
		Fabrication of Prototypes and Performance Tests	678
	26.6	Estimation of Product Cost	679
	26.7	Summary	680
		References	680
		Exercises	681
Chapter 27	Case	Study 4—Ammonia Process	683
•	27.0	Objectives	683
	27.1	Introduction	683
		Project Charter—Objective Time Chart and New Technologies	683
		Innovation Map	684
	27.2	Initial Base Case Design	686
		Concept Stage	686
		Initial Feasible Design	687
	27.3	Design Refinement	692
		Development Stage	699
		Postscript	699
		References	703
		Exercises	703
APPENDICES			
	I.]	Residue Curves for Heterogeneous Systems	704
	II. I	Design Problem Statements by Area	705
	III. I	Materials of Construction	709
INDICES			
		e of Acronyms	711
	Auth	or Index	719
	Subj	ect Index	725

Part One Introduction to Product and Process Design

Engineers apply science and mathematics to provide technological solutions to human and societal needs. The solutions are most often in the form of devices, machines, materials, processes, structures, and systems. The solutions are achieved by research, development, design, and operation. Chemical engineers are unique in their ability to solve technical problems using the principles of chemical kinetics, chemical and physical thermodynamic equilibrium, and mass transfer in addition to the principles of heat transfer and fluid mechanics also applied by other engineers. This textbook applies these principles to chemical **product design** and chemical **process design**.

Product design, introduced in Chapter 1, refers to product design and development steps for both business-to-business (B2B) products and business-to-consumer (B2C) products. Examples of B2B chemical products are (1) polyethylene terephthalate (PET) bottles, (2) nylon fiber, (3) PyrexTM boro-silicate glass, and (4) polyvinyl butyral. Examples of B2C chemical products are (1) sunscreen lotions, (2) insect repellent sprays, (3) light-emitting diode (LED) bulbs, (4) hemodialysis devices for home use, and (5) high throughput screening devices for kinase inhibitors.

Product design consists of a product formulation or construction and a prototype of the product suitable for testing and evaluation. The product construction shows the arrangement of product elements with specified dimensions and desired physical and chemical properties. Chemical engineers work closely with chemists, physicists, and/or material scientists to develop product formulations or construction and are responsible for combining the materials and processing technology to deliver desired product characteristics and performance.

Product development includes other nontechnical aspects of gathering customer needs, opportunity assessment, buy-or-make decision, product cost target and pricing, and sale and marketing strategy needed to launch a new product. Chemical engineers work closely with the business, legal, manufacturing, and supply-chain professionals to design a product that meets the desired cost target.

Process design, introduced in Chapter 2, refers to multiple-step chemical processes for converting raw materials into desired chemicals. The steps may include chemical reactors; equipment to separate chemical mixtures and phases; heat exchangers to set temperatures and phase conditions; and pumps, compressors, and turbines to set pressures. The process may operate continuously, batchwise, or semicontinuously. Examples of processes include the manufacture of (1) gasoline, diesel fuel, lubricants, fuel oils, and so on from crude oil; (2) vinyl chloride from ethylene and chlorine; (3) the potassium salt of penicillin V from phenoxyacetic acid, aqueous glucose, and cottonseed oil; and (4) ammonia from ambient air and natural gas.

A process design is presented in a process-design report that (PFD) showing the arrangement of the selected equipment with their connecting streams; the temperature, pressure, chemical composition, and total flow rate or amount of the material into and out of each piece of equipment; and the rate or amount of energy into or out of each piece of equipment. The PFD is accompanied by tables of stream component flow rates, stream properties, energy requirements, and equipment specifications including recommended materials of construction as well as a complete description of the process and a diagram showing process instrumentation and controllers.

Except perhaps for small projects, **plant design** is largely the province of civil, electrical, and mechanical engineers who take the information in the process-design report and do all other engineering design necessary to construct the plant, including the determination of plant location; design of the plant layout; selection and design of storage vessels for raw materials and products; detailed design of processing equipment; design of supporting structures and foundations for the equipment, design of piping and ducting systems; selection of utilities (cooling water, compressed air, electricity, fuel oil, steam, etc.), and other service facilities. During plant design, chemical engineers may be involved in the detailed design of equipment involving chemical considerations, preparation of a piping and instrumentation diagram (P&ID), and plant layout decisions (at least where safety is a concern). Except for the most common types of processing equipment (heat exchangers, separation columns, pumps, compressors, expanders, and reactors), engineering design aspects of plant design are not treated in this textbook.

Chapter 3 of Part I discusses some supporting aspects of product and process design, including use of the design literature, stimulation of innovation, energy sources, environmental and safety considerations, sustainability with nature, and engineering ethics. The details of product and process design are presented in subsequent parts of this textbook.

Introduction to Chemical Product Design

1.0 OBJECTIVES

This chapter introduces an overview of the myriad chemical products a chemical engineer designs and develops. Launching a chemical product into the market is a complex process. The tasks that need to be executed in a typical product-development project, partly in collaboration with professionals in other disciplines, are identified. The methodologies and tools for performing such tasks are discussed and illustrated with several examples.

After studying this chapter, the reader should:

- 1. Be cognizant of the diversity of chemical products.
- 2. Know the different classes of chemical products and be familiar with some representative products and their characteristics.
- 3. Appreciate the overall approach to product design from conceptualization to product launch.
- 4. Be aware of the contributions a chemical engineer can make in product design and development.
- 5. Be familiar with some of the tools and methodologies used in product design and development.

1.1 INTRODUCTION

The chemical industry is a vast industry with a wide variety of more than 70,000 products, including agrichemicals, ceramics, elastomers, electronic materials, explosives, foods, flavors and fragrances, fuels, industrial gases, inorganic chemicals, metals, oleochemicals, petrochemicals, pharmaceuticals, plastics, and textiles. The industry powers economic growth and raises the standard of living of modern society (Arora et al., 1998). A typical chemical engineering undergraduate curriculum initially focuses on the basics of "how to make" and primarily on organic chemicals. Thus, chemical reactors and unit operations such as distillation, crystallization, absorption, and extraction are covered in detail. Chemical kinetics, transport phenomena—heat, mass, and momentum transfer, and thermodynamics—provide the fundamental understanding of the way in which these operations function.

We consider in Chapter 1 "what to make," which is perhaps the most important decision for the management of a firm. To make a profit, all firms, public or private, large or small, have to produce products that the customer is willing to buy. With the rapid changes in technology, societal needs, consumer expectations, and competitive forces, new products have to be invented and existing products have to be improved or reduced in cost for a firm to prosper or merely to stay in business.

1.2 THE DIVERSITY OF CHEMICAL PRODUCTS

Chemical products are ubiquitous in our daily lives. We may begin the day using a soap bar and shampoo to wash up, brushing our teeth with a toothbrush and tooth paste, and moisturizing our face and hands with a lotion. The clothes we put on may be made of synthetic fibers. In our home, we may find processed foods such as ice cream and butter in the refrigerator, shortening and cooking oil in kitchen cabinets, pharmaceuticals in the medicine cabinet, nylon or polyester carpet on the floor, paint on the walls, a polymer composite countertop, and lawn fertilizer in the storage shed. In some households, there may be an air purifier with titanium dioxide, which is capable of catalytically decomposing the volatile organic compounds in the air and an air conditioner with an environmental friendly refrigerant. Going to work by automobile, we find gasoline in the gas tank, tires made of styrene-butadiene rubber, and a shatterproof glass windshield with an interlayer of transparent polyvinyl butyral.

The Chain of Chemical Products

All the products mentioned above are derived from nature—air, natural gas, petroleum (also known as crude oil), minerals, plants, and animals. Figure 1.1 is a highly simplified chemical product chain showing how the chemical products are produced successively from natural resources. For example, nitrogen can be obtained by cryogenic distillation of air whereas hydrogen is obtained from natural gas. Reaction between nitrogen and hydrogen by the Haber-Bosch process produces ammonia (see Chapter 27). Ammonia in turn reacts with carbon dioxide, also obtained from natural gas, to form urea, which is a key component in fertilizer.

A wide range of hydrocarbons such as ethylene, butadiene, benzene, toluene, xylene, and alkenes are obtained from petroleum in a refinery. In the petrochemical industry, these hydrocarbons can be used to produce a myriad of other useful chemicals. For example, ethylene, the largest chemical product

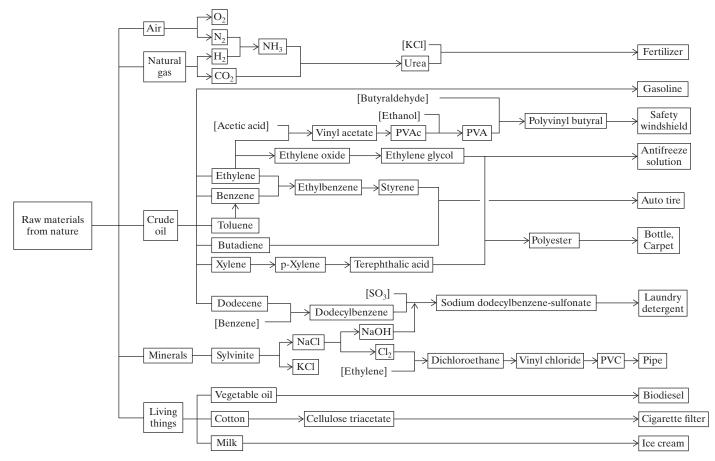


Figure 1.1 A small subset of the chain of chemical products. (The chemicals in the brackets are those not included or out of order in the product chain.)

by volume, is used in the production of rubber, plastics, solvents, and so on. It reacts with acetic acid to form vinyl acetate. Polyvinyl acetate (PVAc) reacts with ethanol to form polyvinyl alcohol (PVA). Polyvinyl butyral, the interlayer of shatterproof glass windshields, is made by reacting PVA with butyraldehyde. Ethylene can also be oxidized to ethylene oxide, which is hydrolyzed to ethylene glycol. Ethylene glycol is used in an antifreeze solution. Ethylene can also react with benzene to form ethylbenzene. Dehydrogenation of ethylbenzene forms styrene. Many automobile tires are made from various types of styrene-butadiene rubber. Sometimes, the inherent amount of benzene in the crude oil is insufficient to meet what is required in the downstream products whereas toluene is in excess. In this case, the excess toluene is converted to benzene using a process called hydrodealkylation, which is discussed in Chapter 6. Xylene contains three isomers: para-, ortho-, and meta-xylenes. Because only para-xylene is oxidized to terephthalic acid, para-xylene has to be separated from the mixture of isomers. After first removing ortho-xylene by distillation, para-xylene can be purified from para- and meta-xylene by crystallization or adsorption. A condensation reaction between terephthalic acid and ethylene glycol forms polyethylene terephthalate (PET), which is used in products such as floor carpet. PET is also used to make transparent bottles by injection molding. Dodecene, one of the alkenes in crude oil, can be converted to sodium dodecylbenzenesulfonate by reacting with benzene, sulfur trioxide, and sodium hydroxide, successively. Sodium dodecylbenzenesulfonate is a member of the linear alkylbenzenesulfonates, a major component of laundry detergent.

EXAMPLE 1.1 Show the main chemical reactions for producing polyester starting with ethylene and para-xylene

SOLUTION

Ethylene oxide
Ethylene glycol
Terephthalic acid
Polyester

As another example, a mineral such as Sylvinite, a mixture of sodium chloride and potassium chloride, can be separated into its constituent components. Sodium chloride undergoes the chlor-alkali process to produce sodium hydroxide and chlorine. Ethylene reacts with chlorine to form dichloroethane, which is pyrolyzed to vinyl chloride, as discussed in Chapter 2. Polymerization of vinyl chloride forms polyvinylchloride (PVC), which is widely used for making pipes. Potassium chloride is used as a fertilizer. Surfactants for soaps and detergents can also be obtained from plant oils and animal fats, which are esters of glycerol and fatty acids. Biodiesel, consisting of long-chain alkyl esters, can also be produced from plant oils. Cotton fibers are often blended with polyester fibers in a fabric for clothing. The blended fabric offers the natural feel of cotton while adding the strength and durability of polyester. Cellulose triacetate from cotton linters is used as a semipermeable membrane for water purification. A wide variety of dairy products such as cheese, ice cream, and yogurt are produced from animal milk.

Many excellent books have been written on industrial chemicals similar to those described here; see, for example, Faith et al. (1975), Austin (1984), and Chenier (2002). Books are also available on those chemical products at the end of the product chain that are used by the consumers (Cussler and Moggridge, 2011; Bröckel et al., 2007, 2013; Ng et al., 2007; Wesselingh et al., 2007).

Companies Engaging in Production of Chemical Products

The chain, or more appropriately, the network in Figure 1.1 captures only a very tiny segment of an exceedingly complex network made up of tens of thousands of products. Typically, a company focuses on a certain segment of this product chain. The separation and use of gases is dealt with by gas companies such as Linde, Air Products, Praxair, and Air Liquide. Petroleum exploration and refining the recovered oil into different chemicals are handled by the so-called oil companies such as Saudi Aramco, Exxon-Mobil, British Petroleum, and Petro China. BASF, Sinopec, Dow, SABIC, DuPont, and Mitsubishi are referred to as *chemical companies*; they convert raw materials and chemicals from oil companies into more complex compounds. Drug discovery is so challenging that it is often handled by highly specialized *pharmaceutical companies* such as Pfizer and Merck. Mineral processing tends to be handled by focused companies as well. For example, Potash Corp is the world's largest producer of potassium chloride (also known as potash). Products such as soaps, detergents, and lotions as well as some processed foods are manufactured by consumer goods companies such as Procter & Gamble and Unilever. In general, the companies upstream of the chemical product chain are relatively large to take advantage of economies of scale. The companies closer to actual consumers are smaller because these downstream companies have to react swiftly to meet market demands. Indeed, many small to medium-size companies produce a broad array of products such as humidity sensors, medical diagnostic kits, and fabric softeners, among others.

B2B and B2C Chemical Products

The products in the chain of chemical products can be broadly classified into two classes: *business-to-business* (*B2B*) and *business-to-consumer* (*B2C*). The former involves a transaction between two businesses, and the latter involves a sale to the consumer. Most of the oil companies' products are B2B products. For example, chemicals such as para-xylene and butadiene are supplied to the chemical companies as raw materials. These chemical products are often referred to as *commodity chemicals*

because the chemical company buys such chemicals from any supplier at the lowest price possible provided that these products meet the company's raw-material specifications. Often, the primary concern for commodity chemicals is purity. The empty PET bottle that the polymer processing company sells to the bottling company is an industrial product; it is still a B2B chemical product but is no longer a chemical. When a consumer purchases a bottle of distilled water, the quality of terephthalic acid, a compound in the product chain leading to the PET bottle, is not the consumer's concern. However, the oxidation of para-xylene to terephthalic acid, if not done properly, produces a colored compound, 4-carboxybenzaldehyde, which makes the PET bottle yellowish. Thus, although commodity chemicals might seem remote from the consumer, their product specifications are indirectly influenced by the consumer, who is the ultimate user of the chain of products. The term basic chemicals is used synonymously as commodity chemicals because they are the building blocks of more complex molecules. Many novel molecules with special characteristics are derived from the basic chemicals and are produced in relatively small quantity. They belong to the class of *specialty chemicals*, which are sold based on what they can do and often offer a relatively higher profit.

The consumer has a more direct say on the specifications of B2C products, or alternatively, consumer products, such as shampoo, lotions, processed foods (butter, cheese, yogurt, potato chips), halogen light bulbs, masking tapes, face masks, and air purifiers. Some of the specifications are quantitative. For example, the air purifier has to be able to reduce the concentrations of certain impurities in the air of a closed room of a certain size to below specified values within a given period of time. Often, the specifications are qualitative in nature. The product has to offer consumer delight-feelings of the consumers when their expectations are fully satisfied. For example, a lotion has to feel smooth and smell good, a wine has to possess a desired bouquet, and a detergent has to impart a soft feel to the fabric. The product specifications for consumer products are often referred to as product attributes to reflect some of the qualitative desires. Example 1.2 shows the typical product attributes for creams and pastes (Wibowo and Ng, 2001). In addition, the product has to be safe and environmentally friendly. These seemingly obvious prerequisites can become controversial. For example, there has been a heated debate on the safety and disposal of PVC. There is no absolute safety, and it is difficult to get all parties to agree on how safe is sufficiently safe.

EXAMPLE 1.2 *Typical product attributes for creams and pastes*

Creams and pastes such as moisturizing cream and sunscreen lotion are common consumer products. Provide a list of their typical product attributes.

SOLUTION

There are four typical product attributes:

Functional Protects parts of the body Cleans parts of the body Provides a protective or decorative coating Causes adhesion to body surface Delivers an active ingredient to the target area

Rheological

Can be poured easily

Spreads easily when rubbed on skin Does not flow readily under gravity but is easy to stir Should give a uniform coating when applied to surface Should not flow by itself but can be squeezed out of the container

Physical

Must be stable for a period of time Melts at a certain temperature Must release an ingredient at a controlled rate

Sensorial

Feels smooth Does not feel oily Appears transparent, opaque, or pearlescent Does not cause irritation

Table 1.1 compares different aspects of B2B and B2C chemical products. B2B chemical products change hands in business-to-business transactions. Thus, an oil company sells para-xylene to a chemical company to make PET. The chemical company in turn sells the PET to a polymer processing company to make PET bottles. Most of these B2B products are in relatively pure form because they are the feedstocks for more complex molecules. An obvious exception is gasoline, which is a mixture of hydrocarbons that is sold directly to the consumer at gas stations. In contrast, most B2C chemical products such as detergent and lotion are mixtures that use chemicals from chemical companies such as surfactants and fragrances as ingredients. Some of these mixtures. For example, CdS/ZnS quantum

dots have a spherical core of CdS encapsulated by a ZnS shell. B2B product design is primarily a molecular design with considerable input from chemists whereas B2C product design often involves multicomponent systems with or without a structure. The technology involved in B2B products tends to be primarily chemistry and chemical engineering in nature. In a typical herbicide development team of 10 or so researchers, there are often nine chemists responsible for organic synthesis and only one chemical engineer in charge of product and process design. B2C products such as air purifiers or health drinks are likely to involve a more diverse team of technical personnel, including electrical and mechanical engineers and food scientists. Furthermore, for most new products, companies' marketing, financial, and legal teams are often involved to ensure that the relevant issues are properly managed.

In general, the B2B product lifetime is much longer than the B2C product lifetime. This is because the specifications for B2B products tend to be well established and remain unchanged over a long period of time whereas the B2C product attributes evolve rapidly along with the changes in consumer preferences. Figure 1.2 contrasts the product life cycle of a typical B2B product with that of a typical B2C product. It shows that the revenue of a B2B product declines because other competitors enter

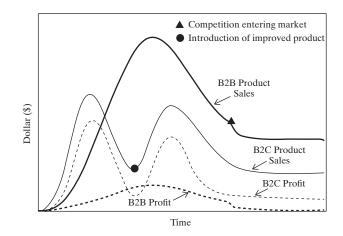


Figure 1.2 Typical life cycles of business-to-business and business-to-consumer chemical products.

	B2B Products	B2C Products
Customers	Allied chemical industries	Consumers
Nature of products	Simple or complex molecules	Devices (equipment), functional products, and formulated products
Product design	Molecular design	Selection of ingredients, product structure, and product attributes
Product life cycle	Decades	Month/year
Team	Primarily chemists and chemical engineers	A multidisciplinary team of marketing personnel, financial specialists, lawyers, electronic engineers, mechanical engineers, chemists, and chemical engineers
Financial goal	Cost reduction	New sources of revenue
Unit operations	Traditional: distillation, crystallization, extraction, absorption, adsorption, etc.	Unconventional: granulation, milling, nanomization, etching, lamination, physical vapor deposition, inkjet printing, screen printing, laser scribing, etc.
Knowledge/know-how	Well structured	Fragmented so far
Technical focus	Engineering optimization	Improved performance followed by reduced cost

the market. The B2C product lifetime is much shorter. The profit relative to sales tends to be much higher than that of the B2B products. In addition, as shown by the two peaks, this B2C product gets a second wind by introducing an improved version.

Because of the long lifetime of commodity chemicals, the research and development (R&D) for B2B products focuses on lowering the production cost of these products whereas the R&D for B2C products emphasizes the conceptualization of new and improved products to generate fresh revenue streams. Most of the manufacturing processes for B2B products are traditional processes. Reaction engineering and unit operations for the manufacturing processes of commodity chemicals including distillation, crystallization, extraction, absorption, adsorption, filtration, membrane separation, and others are well covered in a typical chemical engineering curriculum. The knowledge of commodity chemicals is well structured. The thermodynamic properties of most commodity chemicals are available in the thermodynamic database of commercial simulators. Techniques for predicting the properties of new B2B chemicals are available. If a consumer product is a mixture without a structure such as a liquid fabric softener, processing can be simply mixing operations. For consumer products with a structure, such as solar cells and lithium ion batteries, unconventional processing techniques such as granulation, sputtering, inkjet printing, screen printing, etching, calendering, and so on can be involved. The technical focus of B2B products, except for new molecules, tends to be process optimization; the technical focus of B2C products tends to be the use of advanced materials or technologies to make products with new or improved attributes for the consumer.

Market Sectors and Classes of Chemical Products

Chemical products can be classified by market sector in which a number of firms sell similar goods and services, and by three product classes which include (1) simple or complex molecules, (2) devices (or equipment) and functional products that perform a desired purpose or function, and (3) formulated products that are obtained by mixing selected ingredients that as a whole offer the desired product attributes. Table 1.2 shows examples of chemical products in each of the three product classes in nine market sectors. Remarks are made (in parentheses) to products that might be unfamiliar to the reader. The examples for devices (equipment) are italicized to distinguish them from those for functional products. Consider agricultural products. They can be new molecules that function as herbicides or pesticides. Microencapsulation of herbicide with ethylcellulose produces a controlled-release granule, a functional product, that provides prolonged action in the field. A mosquito mat is a small cardboard mat impregnated with an insecticide solution. It releases an insecticide on heating. It also contains a dye that gradually changes color during use to indicate the amount of insecticide that remains in the mat. The company also sells an accessory device, a heater that fits the mat with the rate of heating set in such a way that the evaporation of the mosquito repellent continues over the desired use period. An herbicide mixture should be properly formulated to manage the vegetation in a given locality. Obviously, chemical products

represent only a small fraction of the total agricultural industry, which also includes the sale of wheat, corn, and so on. The rest of Table 1.2 covering other market sectors is left to the reader to explore. It should be emphasized that much thought goes into consumer products. The disposable baby or adult diaper has multiple layers of materials to move the urine away from the skin, yet it is made sufficiently inexpensive to be disposable.

1.3 PRODUCT DESIGN AND DEVELOPMENT

Design is a synthesis activity, meaning that different parts are combined to create a coherent whole that offers functions and characteristics that cannot be found in the individual parts. Because many B2B products are primarily molecules, product design is equivalent to the synthesis of new molecules. In the past, a chemist often synthesized molecules with the desired characteristics experimentally by trial and error based on intuition and experience. Nylon, discovered in 1934 by Wallace Carothers at DuPont, is a classic example (Hounshell and Smith, 1988). With recent advances in molecular design (Wei, 2007), computer tools are now available to facilitate the design of molecules as discussed in Chapter 4. Because B2C products are primarily mixtures and devices, product design is the activity that aggregates the constituent parts that already exist to generate the final product. Similar to the molecular design tools, computer tools have been developed to predict the properties of mixtures. Computer tools are also available to facilitate the design of the three-dimensional product structures of devices and equipment items such as heat exchangers and distillation columns.

After product design, many activities such as product prototyping and product testing are needed. These activities are referred to as *product development*. Product design and development is inseparable from process design and development to manufacture a product successfully. In addition, marketing, business, and financial specialists as well as engineers from different disciplines are needed to address all relevant aspects. An overview of the activities in a typical product design and development project is presented next.

Tasks and Phases in Product Design and Development

These activities span three phases in time—product conceptualization (Phase I), detail design and prototyping (Phase II), and product manufacturing and launch (Phase III)—and can be classified by job function in terms of management, business and marketing, research and design, manufacturing, and finance and economics. The activities can also be grouped into various tasks (such as project management, market study, product design, prototyping), which may last over more than one development phase (Cheng et al., 2009). For example, economic analysis is performed in all three phases and is part of manufacturing as well as finance and economics. Of particular interest are those activities, italicized in Figure 1.3, that require the input of a chemical engineer. The rest of the issues, which are not-italicized, such as product launch are normally handled by personnel from other disciplines and are not discussed further here.

Market Sector	Molecules	Devices (Equipment)/Functional Products	Formulated Products
Agriculture	Herbicide Pesticide	<i>Liquid mosquito repellent dispenser</i> Controlled-release herbicide Mosquito repellent mat Plant seeds	Fertilizer mixture Herbicide mixture Insect repellent
Automotive	Polyvinyl butyral Butadiene-Styrene copolymer	Auto tire Safety windshield Sun control window film Diesel exhaust fluid (an aqueous urea solution used with a catalytic system in a diesel vehicle to reduce nitrogen oxides in its exhaust)	Antifreeze Motor oil
Building & Construction	Refrigerant Binder Sealant	Indoor catalytic air cleaner Humidity sensor Smart window (applying voltage to change its light transmission properties) Weather barrier film Acrylic composite countertop Foamed concrete	Paint Adhesives for paneling Stucco
Electronics	Organic light-emitting diode materials Phosphor Fullerenes (as electron acceptor) Graphene	<i>Optical bonding equipment</i> LED light <i>Touch panel</i> Silver nanowire Quantum dot	Optically clear adhesive Die attach adhesive Encapsulant Copper nanoparticle paste
Energy	Lithium iron phosphate, nickel cobalt manganese (battery cathode materials) Biodiesel Bioethanol	Solar panel Fuel cell Battery Battery electrolyte	Heat transfer fluid Drilling mud
Environmental	Coagulant Antiscalant	Ion exchange resin Reverse osmosis membrane Dehumidifier	Air freshener Adsorbents for water filter
Food & Beverage	D-Xylose (commonly called wood sugar. It is a natural 5-carbon sugar obtained from plants. It adds flavors to prepared foods and can be used as animal feed.)Sugar ester (a food grade surfactant with sucrose as hydrophilic group and fatty acid as lipophilic group)	Espresso coffee machine Ice cream machine Wine aerator Textured vegetable protein (meat substitute)	Ice cream Health drinks
Personal Care, Health Care & Medical	Tetrafluorethane (a propellant for inhalant drug) Active pharmaceutical ingredient	Medical diagnostic kit Nylon toothbrush filaments Herbal extract Transdermal patch Tooth brush Disposable diaper Hand warmer Hemodialysis device	Tooth paste Sunscreen lotion Bar soap Hair spray Fabric softener Laundry detergent powder Pharmaceutical tablet
Packaging & Printing	Ethylene vinyl acetate copolymer (used as a peelable sealing layer)	<i>Flexo platemaking equipment</i> Food packaging film	Ink for digital textile printing Toner for photocopying Screen print paste

Table 1.2 Different Classes of Chemical Products in Various Market Sectors

Project Management

The starting point of a product-development project is to formulate an *Objective-Time Chart* (Figure 1.4). This is part of the project management task in Phase I. It shows the objectives and subobjectives that have to be met within a given time horizon. Here, objectives A–E are the high-level objectives. For example, these might include the high-level tasks such as market study, product design, and feasibility study shown in Figure 1.3. In Figure 1.4, objective D is decomposed into objectives D1–D6. For example, if objective D is product design, D1 might be

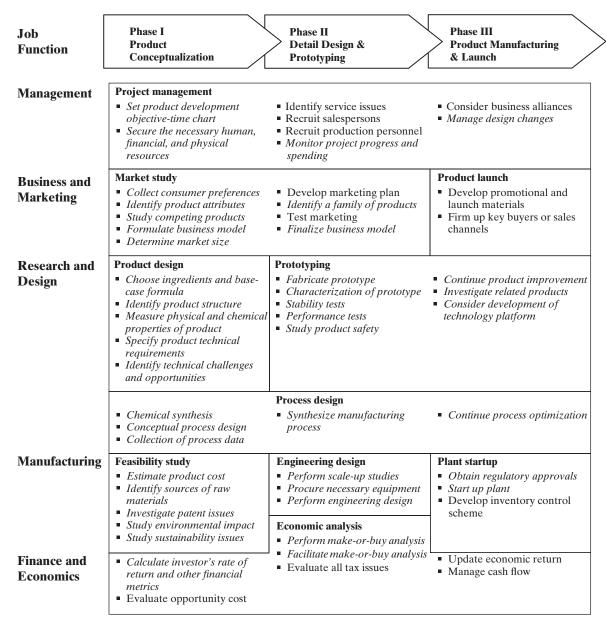


Figure 1.3 The phases and job functions in a multidisciplinary, hierarchical framework for product design and development.

selection of ingredients and D6 measurement of product's physical and chemical properties. Objective D6 is further decomposed into D61–D65. D61 could be measurement of viscosity, D62 measurement of pH, and so on. This methodology is often used by a product/process development team to show all team members the tasks that need to be performed and the time by which they should be completed. By offering a hierarchical view of the development project in its totality, that is, by viewing the whole project with successive layers of increasing details, every member knows what other members are doing to achieve the overall goal. Also, the objective-time chart highlights the tasks that can be carried out concurrently, thereby reducing the overall development time. For example, objectives D2 and D4 take place more or less concurrently and so do D3 and D5.

Different resources are needed to achieve an objective or subobjective. Figure 1.5 depicts *RAT*²*IO*, a mnemonic acronym

that stands for resources, activities, time and tools, input/output information, and objective. Thus, we identify in advance the resources (people and money) required to complete certain activities (experiments, modeling, and synthesis) within a specified period of time using proper tools (experimental setup or software) to generate the necessary information and to meet the given objective. The deceptively simple objective-time chart in Figure 1.4 is what distinguishes an expert from a novice. An effective project manager with the right experience can draw up a realistic timeline, ensure the availability of the necessary manpower and financial resources, and follow through to facilitate the flow of input/output information from objectives to objectives or to subobjectives. Thus, the manager should have a good appreciation of the RAT²IO needed for the various tasks in a product-development project although no individual is expected to master all the details.